Expanding opportunities for the microbial community

The EU Water Framework Directive and the US Clean Water Act

Carol Francis, Cheryl Davies, Chris Kay, Adrian McDonald, Carl Stapleton, John Watkins , Mark Wyer, Peter Wyn-Jones, David Kay CREH University of Wales Aberystwyth dave@crehkay.demon.co.uk

Abstract

Catchment microbial dynamics is an emerging discipline driven by the operational demands of the EU Water Framework Directive which has remarkable similarity to the earlier US Clean Water Act. The lessons of the US legislation for the European science community suggest that the principal reason for water quality impairment in catchment systems is microbial contamination as indexed by faecal indicator organisms. EU science effort to date, as we grapple with the implementation challenges of the Water Framework Directive, has focused overwhelmingly on nutrient pollution in surface fresh waters where phosphorus is the key driver of eutrophication and ecological impairment. This emphasis will shift to the microbial parameters as regulatory agencies seek to use the tools established in the Water Framework Directive to ensure compliance with standards established in daughter Directives covering bathing and shellfish growing waters. This will present opportunities and challenges to the microbiological community. They will increasingly be asked questions and offered research challenges to quantify and gain new process knowledge of catchment microbial processes and, specifically, microbial fate and transport of relevance to the demands of catchment microbial models. This area of investigation is perhaps 30 years behind the nutrient modelling community but rapid progress is possible through the application of established modelling platforms with the applications and exploration of new microbial tools which can better offer parameterisation of key model sectors to place microbial modelling on a par with catchment nutrient, sediment and BOD communities. This paper explores these challenges and suggests key areas for early attention.

What are CWA and WFD?

CWA

1.Impaired Water 2.TMDL

> i. Integrated Catchment Management

WFD

1.Non-compliance 2.POM (Article 11) i. Integrated Catchment Management

What are CWA and WFD?

1.Impaired Water 2.TMDL i. Integrated Catchment Management

WFD

1.Non-compliance 2.POM (Article 11) i. Integrated Catchment Management

What are CWA and WFD?

CWA

1.Impaired Water 2.TMDL

Integrated
 Catchment
 Management

WFD

1.Non-compliance 2.POM (Article 11) i. Integrated Catchment Management

REH

Lessons of CWA for WFD

Why are opportunities Expanding?

The CWA Top 10 17/05/2011

Causes of Impairment for 303(d) Listed Waters

Description of this table

NOTE: Click on a cause of impairment (e.g. pathogens) to see the specific state-reported causes that are grouped to make up this category. Click on the "Number of Causes of Impairment Reported" to see a list of waters with that cause of impairment.

Cause of Impairment Group Name	Number of Causes of Impairment Reported
Pathogens	<u>10,913</u>
Metals (other than Mercury)	7 <u>,461</u>
Nutrients	7,00 <u>3</u>
Organic Enrichment/Oxygen Depletion	6,504
Sediment	6,27 <u>1</u>
Polychlorinated Biphenyls (PCBs)	6, <u>179</u>
Mercury	<u>3,782</u>
pH/Acidity/Caustic Conditions	<u>3,733</u>
Cause Unknown - Impaired Biota	3,386
Turbidity	3,085
Temperature	3,012
Pesticides	1,866

The CWA Top 10 17/05/2011

National Cumulative TMDLs by Pollutant

This chart includes TMDLs since October 1, 1995.

Description of this table

NOTE: Click on the underlined "Pollutant Group" value to see a detailed list of pollutants. Click on the underlined "Number of TMDLs" value to see a listing of those TMDLs for the pollutant Group.

Pollutant Group	Number of TMDLs	<u>Number of Causes of</u> <u>Impairment Addressed</u>
Pathogens	<u>9,134</u>	9,368
Metals (other than Mercury)	7,96 <u>3</u>	8,145
Mercury	<u>6,946</u>	6,978
Nutrients	<mark>4,785</mark>	5,698
Sediment	3,553	4,102
Organic Enrichment/Oxygen Depletion	1,918	2,021
Temperature	<u>1,847</u>	1,854
pH/Acidity/Caustic Conditions	1,798	1,854
Salinity/Total Dissolved Solids/Chlorides/Sulfates	1,542	1,595
<u>Ammonia</u>	1,084	1,147
Turbidity	1,049	1,185
Pesticides	1,004	1,064

Some Catchment Basics

- FIOs have multiple sources
 - Livestock are important
 - Rivers after rainfall similar to treated effluent
 - Treated effluent is often disinfected
 - Intermittent discharges are rarely measured – hence an unknown input?
- FIO flux is highly episodic
 - Rainfall driven / system breakdowns

Faecal indicator sources

Creature	Faecal production (g per day)	<i>E. coli</i> per g faeces	<i>E. coli</i> load (per day)	
Human	150	1.3x10 ⁷	1.9x10 ⁹	
Cow	23600	2.3x10⁵	5.4x10 ⁹	
Hog	2700	3.3x10 ⁶	8.9x10 ⁹	
Sheep	1130	1.6x10 ⁷	1.8x10 ¹⁰	$\langle -$
Ducks	336	3.3x10 ⁷	1.1x10 ¹⁰	Ň
Turkeys	448	3.0x10 ⁵	1.3x10 ⁸	
Chickens	182	1.3x10 ⁶	2.4x10 ⁸	
Gulls	15	1.3x10 ⁸	2.0x10 ⁹	

FIO Loading (some 'ball-park' calculations)

- 100 sheep = 1000 people
- Sewage treatment
 - = 1000 fold reduction in FIO concentration
 - -i.e. reduces 1,000,000pe to 1,000pe

HENCE

 1,000,000 people = 100 sheep in terms of approximate loading to the catchment

Policy/Economic Drivers

- Bathing Water
- Shellfish Waters
- Water Supplies
 - Small supplies

One Example

- 1. New EU standards for bathing waters will be in force by 2015 with the first sampling 2012.
- 2. These standards are tighter and will result in fewer Blue Flag beaches throughout the EU

What is the new approach?

- The WHO have called for real-time prediction of bathing water quality
 AND
- 4. Provision of real-time information to the public as a foundation for public health protection

					COSTS £m		From	То
				Good			3163	4858
				Excel	lent		4999	7818
			7	Three	e Events		1621	2443
					AVINGS £m	n		
				Good			1542	2415
		\leq		Excel	lent		3378	5375
		L		Exect	icine		3370	
	NPV of to	otal benefits	NPV of t	otal costs			4	L .
Option 1	0		9-14				Dee	
Option 2a	1104-192	3	3163-485	i8 ∼Go	od		Does	s not
Option 2b	1638 - 349	7	4999-781	8 Exce	ellent		include	CSOs
Option 3a	2215		2530-384	l6 One	event		impro	ved to
Option 3b	2215		1621-244	13 Three e	events		or	าค
_							snill/s	eason
						`	3pii/3	Cason
oftoc					PROPOSAL FOR A DI OF THE COUNCIL T THE QUALITY OF BA	IRECTIVE TO REVISE	OF THE EUROPEAN PARLI DIRECTIVE 76/160/EEC C	AMENT AND ONCERNING
ertec		1			PARTIAL REGULATO	ORY IMPAC	CT ASSESSMENT	
		Cascad	e g		This Regulatory Impact proposal (COM(2002) 58 the Council to sevise Da (hereafter referred to as' published on the 24 th Octo	Announneut 81 final) for rective 76/16 "the revised ober 2002.	t (RLA) considers the potential a Directive of the European Pa 0/EEC concerning the quality o Directive"), which the Commiss	impact of the chament and of f bathing water ion agreed and
Valuation of Benefits to England and Wales of a Revised Bathing Water Quality Directive and Other Beach					2. Purpose and intende	ed effect of 1	measure	
Characteristics Using the Choice Experiment Methodology					(i) Objective The seried Directive upd context excluse health in t	dates the exit	sting Bathing Water Directive in	order to flather
Tinal report submitted to		Department for Enviro	nment, Food	V	places. It sims to prview and str	reamline the	parameters for setting water qu	elity standards,
Department for Environment, Food and Rural Affairs		and Rural Aff	airs		focusing on fewer micr information will be also p available facilities and the	robiological i provided to t e laternet.	indicators and setting stricter at the public, making use of locally	andards. Better and regionally
by Economics for the Environment Consultance List		B	n Di vi		The revised Directive ain particular the Water Fram	ns to be cola aetrock Direc	esent with other EU water relate tive.	d legislation, in
15 June 2002		Revision of the Bathing Wa Summary of Phases	ater Directive: 1 and 2		 (ii) Background The 1976 Bathing Water 	Directive re	gnizes Member States to great o	uality standards
					at waters within its scope of less seriors (Bassies)	. The purpose	se of the quality standards is to penteritis and are and requirements	reduce the risks

What is the result?

- With 'real time prediction' we can protect the health of bathers and enmaintain present levels of blue flag beaches
- The approach is an 'option' not a regulatory requirement and is outlined in the EU Bathing Water Directive (2006)

What do we need to deliver?

- Black-box models
 - Advisory notices sample discounting
 - Essential to keep the 'Blue Flags'
- Linked catchment and near-shore models <u>that work</u>
 - -i.e. 'Predictive' not just 'Protective'
 - Scheme design and investment
 - Prediction at difficult sites

Do Black Box Models Work?

Scottish Approach

Problems

- Model calibration data
 - 'Bathing Day' is the modelling unit
 - Spot compliance samples provide the calibration data
 - Diurnality introduces random variation and increase model error reducing explained variance
 - Censored data (< and >) and measurement imprecision in cfu and/or MPN counts would further reduce model utility

Solutions

 Characterise the 'bathing day' water quality for model building

- multiple sampling events during daylight

- 07:00 to 19:00
- Measure FIOs with enhanced accuracy through the bathing day
 - Triplicate enumeration / >100+ml filtered

What if it does not work?

The back-up plan

 'predictive' not 'protective' hydrodynamic and water quality modelling
 'real-time' not 'constant' T₉₀ microbial decay coefficients

How to do it

Programme of new field investigations to drive model development

Carmarthen Bay example

Microbial Source Tracking

Does it have a role?

1. Variable MST signal in Scalby Bk

Sample	Source
1	
2	
3	MIXED
4	HUMAN
5	HUMAN
6	HUMAN
7	MIXED
8	MIXED
9	MIXED
10	MIXED
11	MIXED
12	MIXED
13	RUMINANT
14	RUMINANT
15	RUMINANT
16	RUMINANT
17	MIXED
18	RUMINANT
19	RUMINANT
20	MIXED
21	MIXED
22	MIXED
23	MIXED
24	RUMINANT
25	MIXED
26	MIXED
27	MIXED
28	MIXED
29	MIXED
30	MIXED
31	MIXED
32	MIXED
33	MIXED
34	MIXED
35	MIXED
36	MIXED
37	MIXED
38	MIXED
30	MIXED
.,	MIALD
HUMAN	3
RUMINANT	7
MIXED	29
ABSENT	
100111	
	U
HUMAN	Human >90% of both markers
RUMINANT	Ruminant > 90% of both markers
MIXED	Human/Ruminant 10-90% of both markers
ABSENT	Human and Ruminant markers absent
	Blank = Specific markers <1% total <i>Bacteroidetes</i> . Box coloured accord
	presence/absence of markers (i.e. pink = Human only, green = Ruminal
	present (mixed) white = $< 200,000$ total <i>Bacteroidetes</i> in sample

Riverine MST signal

3. UV disinfection did not attenuate Bacteroidetes concentrations

In general, Human dominance indicated at all beaches...

Sample	North Bay	South Bay PNI Lelinway	South Bay compliance	Cayton Bay
1	North Day	South Day River supway	point	Cayton Day
2				
3				
4		HUMAN		
5				
6				
7	HUMAN			
8	MIXED		BUD (D) (A) T	X
9	LUMAN	MIXED	RUMINANI	· · · · · · · · · · · · · · · · · · ·
10	no data	MIXED	MIAED	HUMAN
12	HUMAN	MIALD		HUMAN
13	HUMAN	HUMAN	HUMAN	
14	HUMAN		HUMAN	
15	MIXED			HUMAN
16	HUMAN	RUMINANT	HUMAN	
17	HUMAN		HUMAN	
18	HUMAN	MIXED	HUMAN	
19	HUMAN	HUMAN	HUMAN	/
20	MIXED	HUMAN	HUMAN	
21	MIXED	HUMAN	HOMAN	HUMAN
23	HUMAN		HUMAN	HOMAN
24	HUMAN	HUMAN	¥	
25	HUMAN		MIXED	HUMAN
26	HUMAN		MIXED	HUMAN
27	MIXED	HUMAN	MIXED	HUMAN
28	HUMAN			HUMAN
29			RUMINANT	
30	HUMAN			HUDDAN
32	HUMAN	HUMAN		HUMAN
33	MIXED	HOMAN		
34	HUMAN		MIXED	HUMAN
35				MIXED
36	MIXED			
37	MIXED	MIXED	HUMAN	HUMAN
38	MIXED	HUMAN		HUMAN
39	HUMAN			HUMAN
40	HUMAN	HUMAN	HUMAN	MIXED
41	помян	HOMAN	HOMAN	MIXED
43			HUMAN	HUMAN
44	HUMAN			HUMAN
45	HUMAN		HUMAN	
46	HUMAN	HUMAN		
47	HUMAN			
48		HUMAN		HUMAN
49	HUMAN	HUMAN	HUMAN	HUMAN
50	HUMAN	HUMAN	MIVED	HUMAN
52	MIXED	HUMAN	WIAED	HUMAN
53	MAED	MIXED	HUMAN	HUMAN
54	HUMAN	HUMAN		HUMAN
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
HUMAN	42	38	39	40
RUMINANT	0	1	3	0
ARSENT	0	3	2	4
	•	0	-	

Human=	Human >90% of both markers
Ruminant=	Ruminant > 90% of both markers
Mixed=	Human/Ruminant 10-90% of both markers
Absent=	Human and Ruminant markers absent.
	Blank = Specific markers <1% total Bacteroidetes. Box coloured according to presence/absence
	of markers (i.e. pink = Human only, green = Ruminant only, grey = both present (mixed), white
	= < 200,000 total Bacteroidetes in sample and/or human/animal markers absent

Dominance of human (pink) But...

Some samples negative for specific markers - low recovery of general marker from all these samples (i.e. <200,000)

Some 'flipping' to ruminant (green)

Approx 50% samples below 1% threshold

South Bay Sampling Sites

South Bay temporal variability (1)

Correlations between concentrations at RNLI slipway and compliance point

Parameter	Correlation Significance <i>p</i>		
Faecal Coliforms	<0.001		
Pres. Enterococci	<0.001		
Conf. Enterococci	0.032		
General Bacteroidetes	Not significant		
Human Marker	Not significant		
Ruminant marker	Not significant		
NB. Correlations between relative proportions (e.g. % human) of MST variables also not significant			

Implications.....

- Samples from a single point do not adequately characterise a body of water due possibly to:
 - random variability in the method result
- The lack of correlation with FIOs is concerning suggesting that the MST signal does not reflect the faecal indicator inputs

Recommendations....

Multiple (several 10s) bathing water samples through a range of conditions required to establish human/ruminant balance

Control efforts do they work for FIO flux?

CREH

Result

- 60 80% reduction in high flow FIO flux to bathing waters
 - Simple stock exclusion from watercourses

Constructed Farm Wetlands

Interception Area=Red (x1) ICW Area=Yellow (x1.5)

- 1. How do we characterise the 'bathing day' for predictive 'black-box' models?
 - i. Compliance data does not do this because of diurnality, usage patterns and pollutant inputs
- 2. How long do FIOs live in near-shore waters: it varies with irradiance, temperature, predation etc etc!
 - i. Present models assume single day and night T₉₀ values
 - ii. Real-time T₉₀ data is sparse but essential for predictive process-based models

3. Can MST give us reliable quantitative source apportionment data

i. e.g. % human and % ruminant FIO concentration at a compliance site?

- 5. What do we do to attenuate diffuse catchment fluxes of FIOs?
 - i. Stock exclusion fencing
 - ii. Vegetated filter strips
 - iii. Wetland restoration
 - iv. Woodchip Corrals
 - v. Controls on farm waste disposal
 - a. Treatment
 - b. Spreading

- 6. What do we do to attenuate intermittent discharges from combined sewage systems?
 - i. Does UV work on intermittent discharges?
 - ii. Can chemical systems provide alternatives without environmental impacts?

dvk@aber.ac.uk